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Summary
This study shows how to use a 3D morphable model as a spatial transformer within a convolutional neural
network. It is an extension of the original spatial transformer network [1] in that we are able to interpret and
normalise 3D pose changes and self-occlusions. The network (specifically, the localiser part of the network)
learns to fit a 3D morphable model to a single 2D image without needing labelled examples of fitted models.

Contributions
The proposed architecture is based on a purely ge-
ometric approach in which only the shape compo-
nent of a 3DMM is used to geometrically normalise
an image.
The method can be trained in an unsupervised fash-
ion, and thus does not depend on synthetic training
data or the fitting results of an existing algorithm.
In contrast to all previous 3DMM fitting networks,
the output of our 3DMM-STN is a 2D resampling
of the original image which contains all of the high
frequency, discriminating detail in a face rather than
a model-based reconstruction which only captures
the gross, low frequency aspects of appearance that
can be explained by a 3DMM.
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Source Code

The source code (MatConvNet implementation) is
available at https://github.com/anilbas/3DMMasSTN

Sampling
The output grid is a flattened 3DMM mesh in
2D texture space in which the images are in dense,
pixel-wise correspondence.

A Tutte embedding and a geometry of the mean shape

Self-occlusions The occluded vertices can be com-
puted exactly using ray-tracing or z-buffering or
they can be precomputed and stored in a lookup
table. For efficiency, we approximate occlusion by
only computing which vertices have backward fac-
ing normals.
Masking layer combines the sampled image and
the visibility map via pixel-wise products.

Geometric Loss Functions
Landmark loss minimises the Euclidean distance
between observed and predicted 2D points. Given
L landmark locations l1, . . . , lL and associated de-
tection confidence values c1, . . . , cL, we computed a
weighted Euclidean loss:

`landmark =
L∑

i=1

ci‖Li − li‖2. (1)

Bilateral symmetry loss measures asymmetry of
the sampled face texture over visible pixels.
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Siamese multi-view fitting loss penalises dif-
ferences between multiple images of the same face
in different poses. Siamese training would perform
where a pair of images in different poses were sam-
pled into images V c

i and W c
i with visibility masks

M and N giving a loss:

`multiview =

N∑
i=1

3∑
c=1

Mxt
i,y

t
i
Nxt

i,y
t
i
(V c

i −W c
i )2. (3)

Statistical prior loss minimises an appearance er-
ror, regularising the statistical shape prior which
can be encoded by the following loss function:

`prior = ‖α‖2. (4)

CNN Architecture

θ

⊙

Overview of the 3DMM-STN

Input: θ = (r, t, logs,α)

expr to R

Rotate3DMM Project Scale Translate

r logs

α

R s

X X′ Y Y′ Y′′

The grid generator network within a 3DMM-STN

Localiser network is a CNN that takes an image as
input and regresses the pose and shape parameters,
θ, of the face in the image. Specifically, we predict
the following vector of parameters:

θ = (r, t, logs︸ ︷︷ ︸
pose

, α︸︷︷︸
shape

). (5)

Here, t ∈ R2 is a 2D translation, r ∈ R3 is an axis-
angle representation of a 3D rotation with rotation
angle ‖r‖ and axis r/‖r‖. Since scale must be posi-
tive, we estimate log scale and later pass this through
an exponentiation layer, ensuring that the estimated
scale is positive. The shape parameters α ∈ RD are
the principal component weights used to reconstruct
the shape.
For our localiser network, we use the pretrained
VGG-Faces [2] architecture, delete the classification
layer and add a new fully connected layer with 6 +D
outputs.

Grid generator network combines a linear statisti-
cal model with a scaled orthographic projection. We
apply a 3D transformation and projection to a 3D
mesh that comes from the morphable model. The
intensities sampled from the source image are then
assigned to the corresponding points in a flattened
2D grid.
The sample points in our grid generator are deter-
mined by the transformation parameters θ estimated
by the localiser network.

Output grid for multiple images of the same person in different poses.
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